Question			Marks	Guidance	
$\mathbf{1}$			$\sum_{\gamma=1}^{n} r(r-2)=\sum_{\gamma=1}^{n} r^{2}-2 \sum_{\gamma}^{n} r$ $=\frac{1}{6} n(n+1)(2 n+1)-n(n+1)$ $=\frac{1}{6} n(n+1)[(2 n+1)-6]$ $=\frac{1}{6} n(n+1)(2 n-5)$	A1,A1	Separate sum (may be implied)

	Question	Answer	Marks	Guidance
5		Either $\begin{aligned} & y=3 x-1 \Rightarrow x=\frac{y+1}{3} \\ & \Rightarrow 3\left(\frac{y+1}{3}\right)^{3}-9\left(\frac{y+1}{3}\right)^{2}+\left(\frac{y+1}{3}\right)-1=0 \end{aligned}$ Correct coefficients in cubic expression (may be fractions) $\Rightarrow y^{3}-6 y^{2}-12 y-14=0$	$\begin{gathered} \text { M1* } \\ \text { M1dep* } \\ \text { A1 } \\ \text { A3ft } \\ \text { A1 } \\ {[7]} \end{gathered}$	Change of variable, condone $\frac{y-1}{3}, \frac{y}{3} \pm 1$. Substitute into cubic expression Correct ft their substitution (-1 each error) cao. Must be an equation with integer coefficients
		Or $\begin{aligned} & \alpha+\beta+\gamma=\frac{9}{3}=3 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{1}{3} \\ & \alpha \beta \gamma=\frac{1}{3} \end{aligned}$ Let new roots be k, l, m then $\begin{aligned} & k+l+m=3(\alpha+\beta+\gamma)-3=6 \\ & k l+k m+l m=9(\alpha \beta+\alpha \gamma+\beta \gamma)-6(\alpha+\beta+\gamma)+3=-12 \\ & k l m=27 \alpha \beta \gamma-9(\alpha \beta+\beta \gamma+\beta \gamma)+3(\alpha+\beta+\gamma)-1=14 \\ & \Rightarrow y^{3}-6 y^{2}-12 y-14=0 \end{aligned}$	M1 A1 M1 A3ft A1 [7]	All three root relations, condone incorrect signs All correct Using (3 $\alpha-1$) etc in $\sum k, \sum k l, k l m$, at least two attempted, and using $\sum \alpha, \sum \alpha \beta, \alpha \beta \gamma$ One each for $6,-12,14$, ft their $3, \frac{1}{3}, \frac{1}{3}$. cao. Must be an equation with integer coefficients

Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & \left(0,-\frac{5}{6}\right) \\ & (\sqrt{5}, 0),(-\sqrt{5}, 0) \end{aligned}$	B1 B1 [2]	Allow for both $x=0$ and $y=-\frac{5}{6}$ seen (both) Allow $(\pm \sqrt{5}, 0)$ or for both $y=0$ and $x= \pm \sqrt{5}$ seen
7	(ii)	$\begin{aligned} & a=2 \\ & y=0 \\ & x=-3, x=2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	Must be two equations
7	(iii)		B1 B1 B1 B1 [4]	Two outer branches correctly placed Inner branches correctly placed Correct asymptotes and intercepts labelled For good drawing. Dep all 3 marks above Look for a clear maximum point on the right-hand branch, (not really shown here). Condone turning points in $-\sqrt{5}<x<\frac{1}{2}, y<0$
	(iv)	$-3<x<-\sqrt{5}, \frac{1}{2}<x<2, x>\sqrt{5}$	B3 [3]	One mark for each. Strict inequalities. Allow 2.24 for $\sqrt{5}$ (if B3 then -1 if more than 3 inequalities)

Question		Answer	Marks	Guidance
8	(i)	$\|w\|=\sqrt{\left(2^{2}+(2 \sqrt{3})^{2}\right)}=4$	B1	
		$\arg w=\arctan \frac{2 \sqrt{3}}{2}=\frac{\pi}{3}$	M1	
		$w=4\left(\cos \frac{\pi}{3}+\mathrm{j} \sin \frac{\pi}{3}\right)$	A1	Accept $\left(4, \frac{\pi}{3}\right), 1.05 \mathrm{rad}, 60 \square$ in place of $\frac{\pi}{3}$, or $4 e^{j \frac{\pi}{3}}$
			[3]	

	Questio	Answer	Marks	Guidance
9	(i)	$\begin{aligned} & \beta=(-1)(3 \alpha-1)+5 \alpha+(-1)(2 \alpha+1) \\ & =-3 \alpha+1+5 \alpha-2 \alpha-1=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	multiply second row of \mathbf{A} with first column of \mathbf{B} Correct
9	(ii)	$\begin{aligned} & \gamma=(1)(3 \alpha-1)+15+(-1)(2 \alpha+1) \\ & =\alpha+13 \end{aligned}$	M1 A1 [2]	Attempt to multiply relevant row of \mathbf{A} with relevant column of B. Condone use of BA instead Correct
9	(iii)	When $\alpha=2, \gamma=15$ $\mathbf{A}^{-1}=\frac{1}{15}\left(\begin{array}{ccc} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{array}\right)$ \mathbf{A}^{-1} does not exist when $\alpha=-13$	M1 A1 B1ft [3]	Multiplication of \mathbf{B} by $\frac{1}{\text { their } \gamma},(\gamma \neq 1)$ using $\alpha=2$ in both Correct elements in matrix and correct γ. ft their $\gamma=0$. Condone " $\alpha \neq-13$ "
9	(iv)	$\begin{aligned} & \frac{1}{15}\left(\begin{array}{ccc} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{array}\right)\left(\begin{array}{c} 25 \\ 11 \\ -23 \end{array}\right)=\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \\ & =\frac{1}{15}\left(\begin{array}{c} 60 \\ 90 \\ -45 \end{array}\right)=\left(\begin{array}{c} 4 \\ 6 \\ -3 \end{array}\right) \\ & \Rightarrow x=4, y=6, z=-3 \end{aligned}$	M1 B1 A3 [5]	Set-up of pre-multiplication by their $3 \times 3 \mathbf{A}^{-1}$, or by \mathbf{B} (using $\alpha=2$) $\left(\begin{array}{lll}60 & 90 & -45\end{array}\right)^{\prime}$ soi need not be fully evaluated cao A1 for each explicit identification of x, y, z in a vector or a list. (-1 unidentified) Answers only or solution by other method, M0A0

